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Abstract

In this thesis, a validation of Parallel Distributed Adaptive Signal Processing

(PDASP) technique with the deployment of low complexity MIMO channel estima-

tion algorithm is presented. The proposed PDASP architecture is implemented on

the processing-inefficient low-cost wireless sensor nodes to validate PDASP archi-

tecture in terms of processing time, computational complexity and data transmis-

sion delay. Furthermore, processing time, computational complexity and commu-

nication delay of PDASP architecture with low complexity MIMO channel estima-

tion algorithm are compared with sequentially-operated MIMO channel estimator

for 2× 2, 3× 3, and 4× 4 MIMO communication systems. It is realized that the

sequentially-operated MIMO channel estimator is unable to work for 3 × 3 and

4× 4 MIMO communication system on single unit; while, these MIMO structures

can efficiently be run on PDASP architecture with reduced processing time and

memory utilization.
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Chapter 1

Introduction

.

1.1 Overview

The last two decades have witnessed remarkable research in the field of adaptive

filtering for the improvement of their complexity and convergence performance.

However, these high definition signal processing techniques are still incapable to

be run on a energy constrained and computationally inefficient sensor node due to

its small memory and lesser processing capability. Moreover, in MIMO commu-

nications, the computational complexity of these high definition signal processing

techniques depends on multi-path components and MIMO spatial stream which

makes the complexity very high. The Wireless Sensor Nodes (WSNs) have central

importance in the field of distributed network which are capable to run high def-

inition adaptive algorithm cooperatively and provides a significant impact on the

reduction of computational complexity as well as of processing time.

1
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1.2 Wireless Sensor Networks (WSNs)

From the last decade, wireless sensor networks (WSNs) are considered to be the

emerging field of research. WSNs offer several benefits as compared to wired net-

works (e.g., simple deployment, low equipment cost, dearth of cabling, high mo-

bility, self organization and fault-tolerance). Development in the field of wireless

communications and semiconductor material make it possible to promote wire-

less sensor networks (WSNs) for real time implementation problems. WSNs are

bunches of small, low power, and low cost nodes which work cooperatively and

share the information to central node. A wireless sensor network consists of a

few to several hundred nodes depending upon the desired application. Therefore,

WSNS has an efficient utilization of sensing, computing, receiving and transmit-

ting data in rigid environments. Normally, these low powered small sensing nodes

are equipped with four main components namely; CPU, Sensing unit, battery and

radio transceiver that are used for local data processing, capturing of environ-

mental parameters, provide energy and enables wireless communication capabil-

ity, respectively [1]. Moreover, WSNs are capable of duplex transmission of data

from nodes to central location and from central location to nodes. Primarily, the

WSNs was used for military applications like, surveillance in battlefield. Now a

days, WSNs are used in many commercial and industrial areas, such as process

monitoring, environmental monitoring, target tracking, health monitoring and in-

dustrial applications. However, in some surveillance applications, these sensor

nodes are miniatures. The cost of wireless sensor nodes may vary from a few to

many hundred of dollars, depending upon the individual node complexity. One

of the benefits of WSNs is the usage of license free 2.4 GHZ industrial scientific

and medical (ISM) band which make the node cost effective. According to the

Emerson Process Management, the WSNs reduce the installation cost up to 90%

as compere to the installation cost of wired networks.
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1.2.1 Wireless Sensor Nodes

Wireless sensor nodes or sensor motes are the essential components of the wireless

sensor networks. These low power wireless sensor nodes are capable of self organi-

zation, sensing, processing and communication among themselves. In particular,

wireless sensor node consists of a processing unit, low power transceiver module,

sensor unit and power unit. A brief overview about these units is as follow:

- Processing unit: In the wireless sensor node, the processing unit process the

desired data and controls the performance of the other units in the node, such

as, transceiver and sensor unit. The most common processors are ATMEGA-16,

ATMEGA-128, ASICS, FPGA and DSPs that may be used in any specific node.

- Transceiver: Usually the transceiver used by the wireless sensor node is oper-

ated on 2.4GHZ ISM band and has the capability of transmit, receive, idle (still)

and sleep modes. Moreover, some nodes may use the laser or infrared transceiver

in case of line of sight communication as well.

- Sensor unit: In the sensor unit, different type of sensors such as temperature

sensor, light sensor, humidity sensor and pressure sensor, etc are used to measure

the environmental parameters. These sensors are known as passive sensors. How-

ever, for monitoring the parameters of environment, the active sensors like radar

can also be used in the wireless sensor nodes.

- Power unit: Power unit is responsible of providing energy to other units of

wireless sensor node. Batteries and capacitor are used in power units for continu-

ous supply of energy, that may used for processing, capturing and communication

of data. As batteries and their recharging mechanism is expensive and not feasible

in remote areas. Therefore, different dynamic power measurement techniques are

used to operate the network for longer duration of time [2].
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1.2.2 Processing Capability of Wireless Sensor Node

The performance gauge of wireless sensor node depends on the Central Processing

Unit (CPU), communication range of transceiver and energy availability. Typi-

cally a wireless sensor node provides less processing capability and communication

performance due to limited energy resource. In this regard, various nodes are used

distributively to run the complex adaptive algorithm. Therefore, the cost of a sin-

gle sensor node depends on the performance measure starting from a few dollars

to hundred of dollars. Most commonly used low cost wireless sensor nodes are

ZigBee and ArduinoBT etc.

1.3 Inter-Symbol Interference (ISI)

In wireless communication, when one symbol interferes with the subsequent symbol

then it may cause distortion in the desired signal. This unwanted phenomenon

is known as inter-symbol interference (ISI). Usually, band limited channel and

multipaths causes ISI and it is difficult for the decision device to detect the accurate

information about the signal at the receiver output. Let us consider a transmitted

signal which consists of various symbols, namely; S0, S1, S2, S3, S4, S5, S6 and

each having T symbol duration which is clearly envisioned in Fig.1.1 (a).

The similar copies of transmitted signal in which one is delayed by τ0 and the

other is delayed by τ1 due to one and two multi-path components are shown in

Fig.1.1 (b and c), respectively. It can be seen that relative delay τ0−τ1 between the

two delayed version symbols is greater than the symbol duration which may causes

the overlapping of two signals which are pointed by the arrows in the Fig. 1.1 (b

and c). This overlapping may be constructive or destructive form of interference

and this problem can be overcome by getting the knowledge about the propagation

environment through the use of adaptive filtering technique.
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Figure 1.1: Inter symbol interference (a). Transmited signal (b). Received
signal delayed by τ0 (c). Received signal delayed by τ1

1.4 MIMO Systems And MIMO Channel Esti-

mation

Multiple input and Multiple output (MIMO) refers to multiple transmitting and

multiple receiving antennas, respectively. In MIMO communication systems, the

capacity is enhanced significantly without increasing the operational bandwidth of

communication channel between transmitter and receiver. However, the increase

in capacity is totally based on the assumption that the communication chan-

nel between transmitter and the receiver is precisely known. In particular, the

wireless channel is highly complex; due to the frequency and time selectivity the

wireless channel Turn out to be unpredictable. These are the major limitations

which restrict the use of large-scale MIMO communication system in real time

environment. Therefore, appropriate channel estimation has central importance
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in providing critical impact on overall performance of MIMO communication sys-

tems. Usually, before of every data transmission, known sequence of training bits

are sent. Therefore, by manipulating the known sequence, various adaptive signal

filtering technique are capable to estimate the channel state information (CSI) at

the receiver side.

1.5 Adaptive Filtering

1.5.1 Linear Filter

The term filter normally refers to any device that processes a combination of parti-

cles/elements given to its input according to a characterized set of rules to produce

a corresponding set of particles/elements at its output. However, in signals and

systems, filter is usually used to remove the redundant signal components from a

specific band of frequencies (e.g low pass filters) or to generate good estimate of the

desired signal at its output by reshaping the input signal [3]. The output of linear

filter is the linear function of its input signal. However, the output of non-linear

filter is not a linear function of its input signal; therefore, powerful mathematics

is involved in non-linear signal analysis. Hence, these non-linear systems may be

ruled out for real time implementation over low-cost platforms.

1.5.2 Adaptive Filter

Adaptive filters are used to extract something desirable from the contaminated

signal by varying filter parameters. The values of these parameters can be adjusted

or optimized using an adaptive algorithm. The adaptation or adjustment of filter

coefficients is the primary process of any adaptive filtering technique. Likewise,

adaptive filters are also used to cancel or minimize the undesired components such

as, noise and interference from the input signal. Digital filters can be classified

on the basis of impulse response duration or of their structural design. The two



Introduction 7

basic types of adaptive filters are the Infinite Impulse Response (IIR) filter and

the Finite Impulse Response (FIR) filter [3–5]. The impulse response of IIR filter

is theoretically infinite and denoted as recursive filter on the basis of structural

design. On the other hand FIR filter has finite impulse response and no feedback

path in the form of previous output is required. Therefore, the output of FIR

filter is only dependent on the function of the input signal. Such kind of filters

where the output of the system is only dependent on the function of input signal

are called non-recursive digital filters. In nutshell, FIR filter is preferred over IIR

filter due to some advantages mentioned below

i. The analysis and calculation of the coefficients of FIR filter is more efficient

than the IIR filter.

ii. FIR filter is unconditionally stable due to the finite input and output.

iii. FIR filter has global minimum point than IIR filter.

iv. The complexity of FIR filter is much lesser than IIR filter.

1.5.3 Mean Square Error (MSE) Criterion

In the field of adaptive filtering, Mean Square Error (MSE) is the prominent

performance metric used for the analysis of any adaptive filter. While having

the single minimum point, the FIR filter strictly follows the MSE criterion rather

than of IIR filter. Consider a discrete time filter with transfer function H(z), to

estimate the desired signal d(n) from an input x(n) as depicted in the Fig.1.2.

x̂(n) is the filter output and e(n) is the estimation error which is the difference of

filter output x̂(n) and the desired signal d(n). e(n) can be expressed as

e(n) = d(n)− x̂(n) (1.1)

The MSE criterion ξ for the filter shown in Fig.1.2 can be written as

ξ = E[|e(n)|2] (1.2)



Introduction 8

( )x n


d n( )

e n( ) 
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Figure 1.2: Typical filtering problem

Where E[.] is the expectation operator and ξ is known as performance function or

cost function. For the appropriate selection of cost function, the following points

must be taken into account.

i. Mathematically, the cost function must be traceable.

ii. The cost function should have single minimum or maximum point.

.

1.5.4 Gradient Based Approach

The theory that comes from stochastic framework is based on Wiener filter [3]

and is known as gradient approach. Several gradient-based approaches have been

proposed in the existing literature. Among them are Least Mean Square (LMS),

Normalized LMS (NLMS) and Variable Step Size (VSLMS) algorithms. A brief

overview about each approach is given below.

1.5.4.1 Least Mean Square (LMS) Algorithm

Least Mean Square (LMS) algorithm is the most popular and frequently used

algorithm in all over the world [6]. The most important feature of LMS algorithm

is linear computational complexity. In the LMS algorithm, the step size parameter

and error signal both are used to update the filter coefficients. However, the major

drawback of pure LMS algorithm is the fixed step size value; therefore, the fixed

step size may cause degradation in the performance of the algorithm when the
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scaling occurs in the input signal. As smaller step size value results in the form of

slow convergence rate and by using larger step size value makes the filter converges

fast but as consequence, stability is lost [7].

1.5.4.2 Normalized Least Mean Square (NLMS) Algorithm

In the time varying channel environment, the performance of LMS algorithm with

fixed step size is not acceptable. It is very hard to choose the step size parameter

in LMS algorithm. Moreover, the inappropriate selection of step size value may

causes instability in some cases. Therefore, Normalize LMS (NLMS) algorithm has

the preference over LMS algorithm. In NLMS algorithm the normalized step size

parameter is used which depends upon the variation of the input signal power.

However, the NLMS algorithm still provides slow convergence rate if the input

signal is redundant [8, 9].

1.5.4.3 Variable Step Size (VSLMS) Algorithm

In variable Step Size LMS (VSLMS) algorithm, two step size parameters are used

to tackle the time varying channel conditions. The computational cost of VSLMS

also grows linearly as like in LMS algorithm. However, the major drawback of this

algorithm is the misadjustment of filter weights which may occur when the step

size value is not set appropriately on the basis of high time variations provided by

the channel; therefore, the filter lose its stability.

1.5.5 Least Square Based Approach

The Least Square based filtering approach provides faster convergence rate than

the gradient based algorithms. However, it results in poor numerical stability

and high computational cost [3]. Furthermore, in Least Square approach the filter

coefficients can be updated in iterative manner which may ensure valuable amount

of saving memory by using forgetting factor parameter. The most important
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types of Recursive Least Square (RLS) algorithm are standard RLS algorithm and

Modified RLS algorithm. A brief overview about each algorithm is given below.

1.5.5.1 Standard RLS Algorithm

In standard RLS algorithm, constant forgetting factor and Kalman gain are used

minimize the least square cost function. In this algorithm more weight is assigned

to the recent values of the estimation error and tends to forget about the past

samples. For lesser memory utilization, the value of forgetting factor is set to

be less than unity. Therefore, the RLS algorithm provides fast convergence and

good tracking capability in time varying channel environment. RLS algorithm is

the special case of Kalman filter and derived through the famous matrix inversion

lemma [3] which results in increase of computational complexity.

1.5.5.2 Modified RLS Algorithm

The performance of conventional RLS algorithm depends on the positive constant

forgetting factor parameter. In time varying channel conditions, the smaller value

of forgetting factor in RLS algorithm provides degraded performance in term of

instability. In [10, 11], modified form of RLS algorithm is introduced for time

varying channel conditions to overcome the instability and high sensitivity issues.

The modified algorithms shows the improved convergence performance than the

standard RLS algorithm at the cost of increased computational complexity.

1.6 Research Objective

The main objective of this thesis is to validate the performance of Parallel Dis-

tributed Adaptive Signal Processing (PDASP) architecture. In this regard, the low

complexity MIMO channel estimation algorithm is deployed on low-cost processing-

inefficient wireless sensor nodes to substantiate the validation of PDASP in terms



Introduction 11

of decreased processing time, less computational complexity and low memory uti-

lization.

1.7 Literature Review

Advancement in modern technologies and concept of smart cities have brought

critical impact on high data rate in the sense of increasing demand of internet

availability. Applications like target tracking, video on demand, environmen-

tal monitoring and online banking require flawless internet connectivity as well.

To meet the increasing data rate demand, Multiple Input and Multiple Output

(MIMO) system is important tool to use communication link efficiently. MIMO

systems provide high data rate without increasing the operational bandwidth or

the power of transmitting signals. However, high data rate and capacity improve-

ment still remains a dream to meet the growing demand of wireless services. To

address the aforementioned challenges, various estimation techniques have been

proposed in the literature like, space time coding [12–14] and directional antennas

[15]. Such technique are used to minimize the channel fading statistics in wireless

communication. Therefore, to meet the increasing data rate demands the research

community focuses on the finding of better estimation techniques. The limita-

tions in MIMO channel estimation and their effects have been broadly discussed

in [16–19]. However, channel estimation algorithm still needs to be examined

comprehensively.

In [20], the expression of the estimation algorithm for stationary and quasi-stationary

environment is derived by using maximum likelihood MIMO channel estimator.

However, the algorithm shows unstable behaviour for the quasi- stationary envi-

ronment. Furthermore, the structure of the maximum likelihood MIMO channel

estimator algorithm is improved in [21] for better tracking performance. How-

ever, the improved algorithm needs prior knowledge of channel conditions which

is the main drawback of this algorithm. Moreover, the RLS algorithm that is

a special case of Kalman filter mostly used for channel estimation and channel
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equalization. The RLS algorithm provides good tracking performance by assum-

ing the minimum underlying noise in the stationary environment. Therefore, in

[22, 23] the performance of RLS algorithm for non-stationary environment using

fixed forgetting factor parameter is discussed. It can be observed that the algo-

rithm shows adverse impact by using fixed forgetting factor and provides slow

convergence as well as larger memory utilization. In [24], Modified Adaptive For-

getting Factor (MAFF) RLS is introduced in order to decrease the computational

complexity of RLS algorithm. However, the modified RLS algorithm shows severe

degraded tracking performance due to the iterative change in forgetting factor pa-

rameter. Likewise, Decision Directed RLS (DDRLS) for MIMO channel tracking

is presented in [25] by claiming lesser complexity for MIMO channel tracking

related to Kalman filter. However, due to the increase computational complexity

than RLS algorithm is not feasible for implementation to estimate the channel

coefficients. Moreover, the modified RLS algorithm is introduced in [26] which

provides enhanced tracking performance with respect to the standard RLS algo-

rithm. However, the major drawbacks as compared to conventional RLS algorithm

are the increased processing time and computational complexity. In [27], Least

Mean Square (LMS) solution is presented for MIMO channel estimation, how-

ever, the LMS algorithm provides slow convergence performance as compared to

Least Square based algorithm. In [28], a comparative analysis of Sub-band Adap-

tive Filter (SAF) structures with multi rate filters bank is introduced. The SAF

technique exhibits reduced computational cost through the use of LMS adaptive

algorithm. However, due to phase and amplitude distortion, these systems may

be ruled out to be implemented on real time systems.

Moreover, distributed network based architecture provides improved performance

for many communication applications such as environmental monitoring, channel

estimation and source tracking [29–32]. On a distributed adaptive signal process-

ing estimation platform, the processing is distributed over the network where the

network nodes are allowed to exchange information among themselves in such a

way that the parameter estimation converges in much lesser time [32, 33]. In

[33–38], diffusion techniques are used to find the unknown filter coefficients. In
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these techniques, the parameters of adaptive algorithm are distributed over the

adaptive network to work on a desired goal. However, the major drawback is

increased communication burden which makes a critical impact on the execution

time of the adaptive algorithm. For example, in M nodes diffusion network, the

communication load is written by M × N times, where N shows the dimension

of diffused vector. Therefore, the M × N load implies a crucial impact on the

communication burden of the adaptive network. Moreover, several approaches are

presented in the literature where the significant effort has been made to reduce

the communication burden provided by the diffusion techniques in the distributed

network [39–45]. However, all the given techniques still provide insignificant role

in the sense of reduced execution time of the algorithm. In [46], a Distributed

Adaptive Node-specific Signal Estimation (DANSE) technique is introduced by

using wireless sensor network. The idea behind the DANSE technique is to esti-

mate the channel weight vector by following non-adaptive Wiener Hopf equation

rather than the use of adaptive filtering algorithm, like LMS and RLS algorithm.

This makes DANSE incapable to run any adaptive filtering algorithm on the dis-

tributed platform which is the major drawback of this technique. In [47], a low

complexity MIMO channel estimation is introduced. The low complexity algo-

rithm provides O(M2) lesser multiplication cost than RLS algorithm which is still

remains unexplored to be implemented on low cost wireless sensor nodes. More-

over, in [48], a PDASP architecture is introduced. The PDASP architecture runs

the RLS algorithm in parallel fashion by using the low cost wireless sensor nodes

which exhibit O(2M2) multiplication and O(M2) addition complexity. Further-

more, for low doppler rate, the processing time of PDASP is 82.29% and 95.83%

lesser than that of sequential MIMO RLS and Kalman algorithms respectively.
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1.8 Problem Statement And Research Method-

ology

As discussed above, PDASP architecture provides much lesser complexity and pro-

cessing time than sequentially operated adaptive algorithm on single unit. How-

ever, it has not been validated through implementation. This motivates us to

setup a test bed in order to validate the performance of PDASP in terms of com-

putational cost, processing time and communication burden.

In this thesis, a validation of parallel distributed adaptive signal processing (PDASP)

[48] architecture is presented with the implementation of low complexity MIMO

channel estimation algorithm [47]. To run the PDASP architecture distributively,

low cost Arduino platforms with different memory utilities are used to validate the

performance of distributed architecture in terms of processing time, computational

cost, memory utilization and communication delay using different MIMO antenna

systems with sequentially operated low complexity MIMO channel estimator algo-

rithm. The measurements are obtained on different MIMO systems by considering

direct and multi-path components. It is realized that the single unit is unable to

run sequentially operated 3 × 3 and 4 × 4 MIMO systems. However, deploying

the PDASP architecture on low cost sensor nodes effectively run these systems

with the improvement of processing time, computational complexity and memory

utilization. Moreover, it is observed that the communication delay depends on the

number of antennas. The communication burden may increase with the increase of

MIMO antennas or multi-path components between the transmitter and receiver.

1.9 Thesis Contributions

The summarized research contributions of this thesis are given below

(i) The validation of Parallel Distributed Adaptive Signal Processing (PDASP)

through computationally constrained low cost communication platform is intro-

duced.
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(ii) The balancing procedure for the information interchange over PDASP archi-

tecture is presented.

(iii) The PDASP architecture effectively runs 3×3 and 4×4 MIMO communication

systems with direct and multipath components.

1.10 Thesis Organization

In Chapter 2 the system model is presented. The system model consists of channel

model and receiver model for MIMO communication system. Chapter 3 describes

the implementation and test bed setup for PDASP architecture. Furthermore,

the communication load balancing procedure is also introduced for effective infor-

mation interchange among the distributed nodes. In Chapter 4 the measurement

results are presented by considering 2× 2, 3× 3 and 4× 4 MIMO communication

systems with or without multipaths and finally, Chapter 5 draws the conclusion.



Chapter 2

System Model

2.1 Channel Model

An N × N MIMO communication system equipped with N transmitting and re-

ceiving antennas is shown in Fig. 2.1. The mth received signal y
(m)
k at time index

k can be written as.

y
(m)
k =

N∑
n=1

w
(m,n)
k x

(m,n)
k + β

(n)
k (m = 1, 2, 3, . . . N) (2.1)

where the superscript “m,n” shows the nth transmitting and mth receiving an-

tennas, wk is the channel attenuation coefficient between transmitter and receiver,

xk is the input signal and βk is Additive White Gaussian Noise (AWGN) which is

added at the receiver side. During the block fading transmission environment the

autocorrelation function of channel coefficients can be expressed as

E{w(m,n)
k [w

(m,n)
k ]} ∼= Jo(2πf

(m,n)
D T |k − i|) (2.2)

Where E{.} is the expectation operation, Jo(.) is the zeroth order first kind

Bessel function fD is the doppler frequency and T is symbol duration. According

to the uncorrelated scattering model [49], the auto regressive model of length l by

16
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Figure 2.1: Frequency-Selective channel model for MIMO communications.

considering the assumption of independent MIMO streams can be written as

w
(n,m)
k =

L∑
l=1

γ
(m,n)
i w

(m,n)
k + ϑ

(n)
k (2.3)

where γ
(m,n)
i is the ith channel coefficient between nth transmitting and mth re-

ceiving antennas and ϑ
(n)
k is independent and identical distributed (i.i.d) Gaussian

process having mean zero and their variance can be expressed as

E{ϑ(n)
k [ϑ

(n)
k ]∗} = σ2

w
(m,n)
k

(2.4)

To achieve the optimal parameter for AR channel model, eq. 2.4 can be solved

through Wiener equation [50], we get

Jo(2πf
(m,n)
D T |k − t|) =

L∑
l=1

J0(2πf
(m,n)
D T |k − l − t|)γ(m,n)i (2.5)

for t = k − l, k − l + 1, k − l + 2, k − l + 3, . . . k − 1

The power of each channel coefficient in non-stationary environment using the
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assumption of unit power channel matrix can be expressed as

l∑
k=1

E
[∣∣w(m,n)

k

∣∣2] = 1 ∀n,m (2.6)

The velocity of mobile user and Doppler shift in the carrier frequency cause the

time variation in the channel. Therefore, the standard assumption which is feasible

in many of the cases can be defined as

f
(m,n)
D = fD ∀n,m (2.7)

The channel coefficient γ is assumed to be same for all f
(m,n)
D [51]. Therefore, due

to assumption used in eq. 2.7, we have

γ = Jo(2πfDT ) (2.8)

To accommodate the channel variations, the channel matrix Wk relative to first

order Markov process [52], can be written as

Wk = γWk-1 + ςk (2.9)

where ςk is N × N matrix of i.i.d Gaussian processes with variance σ2
ς can be

expressed as

σ2
ς = 1− γ2 (2.10)

Rewritting the eq. 2.1 in matrix by using the assumption of parallel interference

[53], we have

yk = WH
k xk + βk (2.11)
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where,

Wk =


w

(11)
k w

(12)
k . . . w

(1N)
k

w
(21)
k w

(22)
k . . . w

(2N)
k

...
... . . .

...

w
(N1)
k w

(N2)
k . . . w

(NN)
k


is N × N channel matrix, x(n) = [x

(1)
k , x

(2)
k , x

(3)
k . . . x

(N)
k ] is the transmitted signal

vector and βk is white noise with variance σ2
β. Due to multi-path fading pro-

vided by the propagation environment, the channel matrix Wk becomes W̃k with

N × N(M) dimension. Where M shows the number of multi-path components.

The dimension of W̃k is not only dependent on the number of transmitting and

receiving MIMO streams but also depends on the number of multi-paths present

between transmit and receive antennas which is clearly shown in Fig.2.1. Now the

channel matrix W̃k having each entry w
(trl)
k as t = 1, 2, 3 . . . N , r = 1, 2, 3 . . . N ,

l = 0, 1, 2, 3 . . .M − 1 can be written as

W̃k =


w

(11(0))
k . . . w

(11(M−1)
k . . . w

(21(0))
k . . . w

(N1(M−1))
k

w
(12(0))
k . . . w

(12(M−1)
k . . . w

(22(0))
k . . . w

(N2(M−1))
k

...
...

... . . .
...

...
...

w
(1N(0))
k . . . w

(1N(M−1)
k . . . w

(2N(0))
k . . . w

(NN(M−1))
k


Similarly, the transmitting signal xk becomes x̃k = [x

(1)
(k) . . . x

(1)
k−(M−1) . . . x

(2)
(k) . . . x

(2)
k−(M−1)

. . . x
(N)
k−(M−1)] which can also depends on the multi-path components provided by

the propagation environment.

2.2 Receiver Model

In low complexity MIMO estimation algorithm, all subparts of filter are interde-

pendent on each other which makes the adaptive algorithm to run in sequential

manner. Before introducing the parallel structure of low complexity MIMO esti-

mation algorithm, it is necessary to introduce some timing variables that can be
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Figure 2.3: parallely-operated low complexity MIMO channel estimation

defined as below.

-Computational Time Tc: It is the time required by a processor for single

computation.

-Block processing time Tb: It is the multiple of Tc consists on a single block of

algorithm.
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-Fetch time: It is the time to take the information from one block to another

block.

-Algorithm step time Ts: It is the time taken by the algorithm for one complete

iteration.

The sequential working of low complexity MIMO estimation algorithm is shown in

Fig. 2.2, where it can be visualized that all the blocks of algorithm are working se-

quentially. The fetch time, Tf , will be zero if the low complexity MIMO estimation

algorithm is operated on a single unit. However, by using PDASP architecture,

the fetch time will vary and depends upon the size of data elements that are being

transmitted. The block diagram of PDASP is shown in Fig. 2.3. The PDASP

architecture consists on one master node M1 and three slave nodes S1, S2, and S3

respectively. The nodes M1 and S3 are interlinked with S1 and S2, respectively,

while M1 is also connected to S3. In the PDASP architecture, all the four process-

ing nodes would cooperatively work on the desired process and then interchange

the information among the nodes. The computational time of each block is differ-

ent from other blocks in PDASP architecture. Therefore, the computational time

of any specific block is dependent upon the numbers of Tc. Furthermore, all the

processing nodes in the PDASP architecture are synchronized with each other for

being working on a combined goal. In this way, the computationally incapable

low cost small platform is made capable to run the complex adaptive algorithm

parallely.

In the proposed scenario, the PDASP architecture and MIMO-capable cluster

head both are working in parallel with one another. The MIMO capable cluster

head that has limited signal processing capability which is only engaged in commu-

nication with a far gateway. The PDASP architecture runs the complex adaptive

algorithm for MIMO channel estimation and then gives the channel matrix to the

MIMO-capable cluster head to estimate the data for next of the communication
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session. The parallel structure of PDASP architecture and MIMO-capable cluster

head is depicted in Fig. 2.4. The communication data frame that is designed for

distributed signal processing is shown in Fig. 2.5. It can be seen that the training

and information sessions are represented by Ci (i=0,1,2,...) and Bj (j=1,2), re-

spectively. This communication data frame is designed in such a way that at the

same time MIMO-capable cluster head and PDASP architecture both are engaged

in data and channel estimation, respectively. In this data transmission frame the

coherence time Tc includes the twice of training and data sessions. Where the

coherence time is the duration of time over which the channel impulse response

remain constant. During the section of B1, or B2, the MIMO capable cluster head

estimates the data using the prior information of channel matrix which is clearly

envisioned in Fig. 2.5. However, during the session of C1 or C2, the training bits

are known and available at the PDASP architecture. Therefore, the MIMO clus-

ter head directly gives the received symbols to PDASP architecture, so that the

PDASP architecture estimates the channel for next data session.

Node1 

Node2 Node3 

Node4 
Cluster Head 

Tx Rx 

Figure 2.4: MIMO-capable cluster head based PDASP communication

Tc 

C1 C2 C3 C4 B1 at C0 B2 at C1 B1 at C2 

Figure 2.5: Block transmission data sequence
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2.3 General Assumptions

In order to validate the PDASP architecture, the following assumption must be

taken into account.

i. The quasi stationary block fading channel environment is considered for mod-

eling the channel.

ii. The 2× 2, 3× 3 and 4× 4 MIMO communication systems are considered with

one multipath ,two multipath and no multi-path components.



Chapter 3

Implementation and Testing

In this chapter, the approaches used for the implementation and testing of PDASP

architecture are discussed.

3.1 TestBed Setup

In testbed setup, four low cost wireless sensor nodes from the Arduino platform are

used to implement the PDASP architecture. The sharing of information among

the nodes in PDASP architecture is established by NRF24L01 radio transceiver

modules. The distance among the four senor nodes is set approximately 24cm

with each apart. The balancing communication model is used for information

interchange over the PDASP architecture. The features and specifications about

the selected arduino nodes and NRF24l01 transceiver module are shown below.

3.1.1 Arduino

Arduino is an open source platform comprising of different low cost micro-controllers

like, ATmega2560, ATmega8, ATmega168, ATmega328, ATmega1280. Each ar-

duino device has different features like I/O pins, flash memory and on-chip SRAM

24
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memory. The Arduino nodes namely; Nano, Uno and Mega are used to substanti-

ate the validation of PDASP architecture. The main specifications of Nano, Uno

and Mega are shown below.

3.1.1.1 - Arduino Nano

Arduino Nano is small board based on Atmega168 with on board components such

as RAM and Flash etc. The main features of arduino Nano are shown below.

• operating voltage: 5V

• Non-volatile Memory: Flash On-chip 16 KB

• Memory: On-chip SRAM 1KB

• CPU speed: 16MHZ

3.1.1.2 - Arduino Uno

On the other hand, Arduino Uno is comprising of Atmega328P micro-controller.

The main specifications of the Arduino Uno are as shown.

• operating voltage: 5V

• Non-volatile Memory: Flash On-chip 32 KB

• Memory: On-chip SRAM 2KB

• CPU speed: 16MHZ

3.1.1.3 - Arduino Mega2560

Likewise, Arduino Mega uses the Atmega2560 microcontroller and it has the fol-

lowing on board specification.

• operating voltage: 5V

• Non-volatile Memory: Flash On-chip 256 KB

• Memory: On-chip SRAM 8KB
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• CPU speed: 16MHZ

3.1.2 NRF24L01 Transceiver

In PDASP architecture, the communication is possible among four nodes through

the NORDIC radio NRF24L01 Trans-multiplexer Modules. The NRF24L01 is op-

erated on 2.4GHz industrial scientific and medical (ISM) band. It is low cost mod-

ule with significant features like low current consumption, enhancedshockBurstTM

and 125 RF channels. The maximum transmission speed of this Module is 2Mbps.

Likewise, the maximum output power is 0dbm at 11.3mA. Moreover, the NRF24L01

module is easily interfaced with arduino by using built in libraries.

3.2 Communication Load Balancing Procedure

The comparison between the sequential and PDASP architecture is discussed thor-

oughly in [48]. In this section, the procedure of information interchange over

PDASP architecture is presented. The PDASP architecture consists of four pro-

cessing nodes, namely; M1, S1, S2 and S3 which are clearly envisioned in Fig. 3.1.

Among four wireless sensor nodes, M1 behaves as the master node while S1, S2 and

S3 are acting as slave nodes. The selection of M1 as master node is on the basis

of maximum computational complexity occupied among all nodes in the PDASP

architecture. Before running the expensive procedure parallely, M1 sends a beacon

message to all the slave nodes to make them ready for working on the desired goal.

After that, all the four nodes would ready to work on the desired process. As,

the computational cost occupied by node M1 is greater than those of slave nodes

in PDASP architecture. Therefore, all the slave nodes wait until the process of

the master node M1 is not completed and then all the nodes would share the

information among themselves. The communication load balancing procedure for

PDASP architecture is shown in Fig. 3.1. In the balancing procedure, first of all
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Figure 3.1: Balancing procedure for the transmission of data over PDASP
architecture

gk is transmitted from M1 towards S3 and S1 then S1 and S3 forward the informa-

tion of Ψk and Wk towards M1 and S2, respectively. Likewise, after getting the

information of Ψk and Wk, M1 and S2 share the information regarding ak and ek

towards S1 and S3, respectively. Moreover, it is noted that without considering the

multipath components the communication burden for the MIMO communication

system is totally balanced over the network. However, the communication burden

may vary while considering multipath components that will be discussed in the

next chapters.

3.3 Implementation of PDASP Architecture

The PDASP architecture with its implementation on low cost platforms by running

low complexity MIMO channel estimation algorithm is shown in Fig. 3.2. The low

complexity MIMO channel estimator provides N2 lesser multiplication complexity

than those of RLS and robust variable forgetting factor (RVFF-RLS) adaptive
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Figure 3.2: PDASP architecture for low complexity MIMO channel estimator
with non-aligned time indexes

filtering algorithms. By using the PDASP architecture, the low complexity MIMO

estimation algorithm runs in parallel fashion with time non-alignment to ensure the

measure of low processing time respective to each sensor node in the network. Let,

the processing time taken by filter weight matrix Wk , estimation error ek, Kalman

gain gk and error covariance matrix Ψk be TW, Te, Tg and TΨ, respectively.

Therefore, the time taken by the sequential algorithm when it runs in cascaded

fashion [48] can be written as

TΨ + Tg + Te + TW = Ttot. (3.1)

The processing time taken by the master node M1 is greater than those of slave

nodes. Therefore the equivalent time of each slave node relative to the master

node M1, can be defined as

| Tg − TΨ |= ∆TΨ

| Tg−Te |= ∆Te

| Tg−TW |= ∆TW

(3.2)

Therefore, equivalence processing time Teq can be expressed as

Tg = TΨ + ∆TΨ = Te + ∆Te = TW + ∆TW = Teq (3.3)
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Table 3.1: Working procedure of PDASP without multipath components for
MIMO communication system

Initilize:Wk−1,ak−2, r̂k−1,Ψk−1,Ψk−2, ek−2,gk−2

parallel procedure for M1, S1, S2 and S3
for k=0:N

Process node S2
at time t1: r̂Tk = xTkWk−1

at time t1: ek−1 = rk−1 − r̂k−1

at time t1: wait ∆Te

Process node M1

at time t1: ak−1 = xTk−1Ψk−1

at time t1: gk−1 =
ak−1

aTk−1xk−1 + σv,k

Process node S1
at time t1: Ψk = Ψk−2 − gk−2a

T
k−2

at time t1: wait ∆TΨ

Process node S3
at time t1: Wk = Wk−1 + ek−2g

T
k−2

at time t1: wait ∆TW

at time t2: Transmit gk−1 from M1 to S3 and S2
at time t3: Transmit ek−1 from S2 to S3, ak−1 from M1 to S1
at time t4: Transmit Ψk−1 from S1 to M1, Wk from S3 to S2
end for

The strict and sufficient condition in terms of low processing time can be written

as

Teq + Tf,Ψ + Tf,g + Tf,e + Tf,W � Ttot (3.4)

where Tf,Ψ, Tf,g, Tf,e and Tf,W are the fetch times regarding the transmission of

data over the PDASP architecture. The working procedure of PDASP using low

complexity MIMO channel estimation algorithm is shown in Table. 3.1, where all

the nodes would capable to share the information among themselves after getting

the time equivalent to maximum processing time of master node.
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3.4 Sequential Implementation and Memory Lim-

itation

In sequential algorithm, all the subparts are integrally running on single unit.

While executing the sequential algorithm on single unit, the memory limitation

comparisons on 2 × 2, 3 × 3 and 4 × 4 MIMO communication system with one,

two and no multi-path components are shown in Table. 3.2. It has been observed

that as the number of MIMO antennas and multi-path components increase the

low memory devices like NANO and UNO are unable to run the low complexity

MIMO channel estimation algorithm on single unit.

Table 3.2: Memory limitation comparison on different sequential MIMO sys-
tems with direct and multipath components using sequential implementation

Aurdino
Platform

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

NANO
No Multipath

Working Working Working

UNO
No Multipath

Working Working Working

MEGA
No Multipath

working Working Working

NANO
One Multipath

Working Memory
Error

Memory
Error

UNO
One Multipath

Working Working Memory
Error

MEGA
One Multipath

Working Working Working

NANO
Two Multipaths

Memory
Error

Memory
Error

Memory
Error

UNO
Two Multipaths

Working Memory
Error

Memory
Error

MEGA
Two Multipaths

Working Working Working
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Table 3.3: Memory improvement for different MIMO systems with direct and
multipath components using PDASP architecture

Aurdino
Platform

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

NANO
No Multipath

Working Working Working

UNO
No Multipath

Working Working Working

MEGA
No Multipath

working Working Working

NANO
One Multipath

Working Working Working

UNO
One Multipath

Working Working Working

MEGA
One Multipath

Working Working Working

NANO
Two Multipaths

Working Memory
Error

Memory
Error

UNO
Two Multipaths

Working Working Working

MEGA
Two Multipaths

Working Working Working

3.5 Parallel Implementation with Working Im-

provement

In parallel implementation, the computationally incapable and inexpensive plat-

forms are capable to work in parallel manner and provide much lesser processing

time. The memory improvements comparison on different MIMO systems with

one, two and no multi-path components are shown in the Table.3.3. It is observed

that the distributed strategy effectively runs the sequential algorithm for different

MIMO systems with multi-path components without any complication of memory

error. However, NANO among all three sensor nodes is unable to work for 3 × 3

and 4× 4 MIMO communication system with two multi-path components due to

limited memory availability.



Chapter 4

Results Description

In this chapter, measurement results are presented by considering various MIMO

communication systems with direct and multi-path components. The MIMO

BPSK communication system with and without multi-path components are mod-

eled in MATLAB software by considering an SNR=30dB. The received signal

vector that has been generated in MATLAB environment is then given to low com-

plexity MIMO channel estimation algorithm. The low complexity MIMO channel

estimation algorithm is deployed on low cost wireless sensor nodes to substanti-

ate the validation of PDASP technique. The performance outcomes of PDASP

technique are presented in subsection of this chapter.

4.1 Complexity Comparison

In this section, the computational complexity of sequential and distributed adap-

tive filtering technique for different MIMO communication systems is discussed.

The low complexity MIMO channel estimation algorithm sequentially provides

2M2 + 2M(N + 1) + 1 multiplications and 2M2 + 2MN additions per iteration.

Where N shows the MIMO spatial streams and M represents the filter order. How-

ever, by using the PDASP architecture, the computational complexity respective

32
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to each processing node is much lesser than that of sequentially operated low com-

plexity MIMO estimation algorithm which is clearly envisioned in Table. 4.1.

Table 4.1: Computational complexity relative to each processing node

Processing Node Multiplication
Complexity

Addition Complex-
ity

Node M1 M2 + 2M + 1 M2

Node S1 M2 M2

Node S2 MN MN

Node S3 MN MN

Likewise, the multiplication and addition complexity with direct and multipath

components for various MIMO systems are shown in Table. 4.2 and Table. 4.3,

respectively. Furthermore, the percentage improvement of computational com-

plexity between sequential algorithm and maximum computational cost occupied

by node M1 of PDASP technique is shown in Table. 4.4. It can be seen that the

multiplication and addition complexity provided by the PDASP architecture is

much lesser than the sequentially operated low complexity MIMO channel esti-

mation algorithm. Moreover, the percentage improvement more than of 50% in

reduction of computational complexity show a superlative improvement in terms

of low energy consumption.

4.2 Processing Time Comparison

The processing time with respect to sequentialy operated low complexity MIMO

estimation algorithm and its implementation on PDASP architecture is shown in

Table. 4.5. It is realized that the processing time obtained by using PDASP tech-

nique provides parallely much lesser processing time than the sequentialy operated

low complexity MIMO channel estimation algorithm. In case of no multipath com-

ponents, the processing time taken by node M1 is comparatively greater than the

other slave nodes. The increased processing time taken by node M1 is on the basis
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Table 4.2: Sequential and distributed multiplication complexity for different
MIMO systems with and without multipath components

Processing
Algorithm

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

Sequential
Algorithm No Multipath 21 43 73

Node M1 No Multipath 9 16 25

Node S1 No Multipath 4 9 16

Node S2 No Multipath 4 9 16

Node S3 No Multipath 4 9 16

Sequential
Algorithm One Multipath 57 121 209

Node M1 One Multipath 25 49 81

Node S1 One Multipath 16 36 64

Node S2 One Multipath 8 18 32

Node S3 One Multipath 8 18 32

Sequential
Algorithm Two Multipaths 109 235 409

Node M1 Two Multipaths 49 100 169

Node S1 Two Multipaths 36 81 144

Node S2 Two Multipaths 12 27 48

Node S3 Two Multipaths 12 27 48

of larger computations involvement than the other nodes in the PDASP archi-

tecture. However, in case of multipath components, the time taken by node S1,

takes a lead because of larger memory utilization than the processing node M1.

Therefore, the equivalence processing time relative to node S1 in case of multipath

components can be expressed as
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Table 4.3: Sequential and distributed addition complexity for different MIMO
systems with and without multipath components

Processing
Algorithm

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

Sequential
Algorithm No Multipath 16 36 64

Node M1 No Multipath 4 9 16

Node S1 No Multipath 4 9 16

Node S2 No Multipath 4 9 16

Node S3 No Multipath 9 9 16

Sequential
Algorithm One Multipath 48 108 192

Node M1 One Multipath 16 36 64

Node S1 One Multipath 16 36 64

Node S2 One Multipath 8 18 32

Node S3 One Multipath 8 18 32

Sequential
Algorithm Two Multipaths 96 216 384

Node M1 Two Multipaths 36 81 144

Node S1 Two Multipaths 36 81 144

Node S2 Two Multipaths 12 27 48

Node S3 Two Multipaths 12 27 48

| TΨ−Tg |= ∆Tg

| TΨ−Te |= ∆Te

| TΨ−TW |= ∆TW

(4.1)

The working procedure of PDASP architecture with multipath components is

shown in Table. 4.6. Moreover, the percentage improvement in decreased pro-

cessing time using PDASP architecture is shown in Table. 4.7. It can be seen that
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Table 4.4: Percentage improvement of multiplication and addition complexity
for different MIMO systems

Complexity Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

Multiplication
Complexity

No Multipath
57.14% 62.79% 65.75%

Multiplication
Complexity

One Multipath
56.14% 59.50% 61.24%

Multiplication
Complexity

Two Multipaths
55.04% 57.44% 58.70%

Addition Com-
plexity

No Multipath
75.00% 75.00% 75.00%

Addition Com-
plexity

One Multipath
66.66% 66.66% 66.66%

Addition Com-
plexity

Two Multipaths
62.50% 62.50% 62.50%

the PDASP architecture provides a significant improvement in decreased process-

ing time parallely than the sequentially operated low complexity algorithm. This

decreased processing makes a critical impact on the efficiency of the processing

device as well as on the power consumption.

4.3 Memory Utilization Comparison

It is observed that the distributive strategy effectively runs the sequential algo-

rithm for different MIMO systems without any complication of memory error.

However, NANO among of all three sensor nodes unable to work for 3 × 3 and

4 × 4 MIMO system with two multi-path components because of lesser mem-

ory specification. Likewise, the percentage improvement of memory utilization is

shown in Table. 4.8.

It can be observed that the PDASP architecture while running the sequential
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Table 4.5: Sequential and distributed processing time in µsec for different
MIMO systems with and without multipath components

Processing
Algorithm

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

Sequential
Algorithm

No Multipath
696 1420 2396

Node M1
No Multipath

196 348 512

Node S1
No Multipath

112 276 508

Node S2
No Multipath

84 176 336

Node S3
No Multipath

108 268 476

Sequential
Algorithm

One Multipath
1780 3532 6116

Node M1
One Multipath

524 1008 1612

Node S1
One Multipath

508 1000 1772

Node S2
One Multipath

164 332 680

Node S3
One Multipath

212 508 920

Sequential
Algorithm

Two Multipaths
3272 6852 11816

Node M1
Two Multipaths

1004 1992 3080

Node S1
Two Multipaths

1020 2268 4544

Node S2
Two Multipaths

248 504 884

Node S3
Two Multipaths

332 772 1232

algorithm parallely provides lesser memory utilization in sense of variable storage.

This can also makes a critical impact on the efficiency of the processing device.
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Table 4.6: Working procedure of PDASP with multipath components for
MIMO communication system

Initilize:Wk−1,ak−2, r̂k−1,Ψk−1,Ψk−2, ek−2,gk−2

parallel procedure for M1, S1, S2 and S3
for k=0:N

Process node S2
at time t1: r̂Tk = xTkWk−1

at time t1: ek−1 = rk−1 − r̂k−1

at time t1: wait ∆Te

Process node M1

at time t1: ak−1 = xTk−1Ψk−1

at time t1: gk−1 =
ak−1

aTk−1xk−1 + σv,k

at time t1: wait ∆Tg

Process node S1
at time t1: Ψk = Ψk−2 − gk−2a

T
k−2

Process node S3
at time t1: Wk = Wk−1 + ek−2g

T
k−2

at time t1: wait ∆TW

at time t2: Transmit gk−1 from M1 to S3 and S2
at time t3: Transmit ek−1 from S2 to S3, ak−1 from M1 to S1
at time t4: Transmit Ψk−1 from S1 to M1, Wk from S3 to S2
end for

4.4 Communication Time Comparison

The complete time taken by the PDASP architecture for one iteration including

the communication burden is shown in Table. 4.9. It is observed that the com-

munication burden is directly dependent on the number of MIMO streams and

number of multipath components. The time difference of one complete iteration

and maximum processing time taken by any node in PDASP architecture is shown

in Table. 4.10. It is realized that the communication burden is much higher than

the maximum processing time of any specific node in the PDASP architecture.

So, there must be a trade off between the communication burden and the number

of MIMO spatial streams.
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Table 4.7: Percentage improvement in processing time for different MIMO
systems

Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

No Multipath
71.84% 75.49% 78.63%

One Multipath
70.56% 71.46% 71.02%

Two Multipaths
68.82% 66.90% 61.54%

Table 4.8: Percentage improvement in memory utilization using PDASP ar-
chitecture

Processing Time Multipath
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

Sequential
Algorithm

No Multipath
696 1420 2396

Combined Time
of

M1, S1, S2, S3

No Multipath
500 1068 1832

Percentage
Improvement

No Multipath
28.16% 24.78% 23.53%

Sequential
Algorithm

One Multipath
1780 3532 6116

Combined Time
of

M1, S1, S2, S3

One Multipath
1408 2848 4984

Percentage
Improvement

One Multipath
20.89% 19.36% 18.50%

Sequential
Algorithm

Two Multipaths
3272 6852 11816

Combined Time
of

M1, S1, S2, S3

Two Multipaths
2604 5536 9740

Percentage
Improvement

Two Multipaths
20.41% 19.20% 17.56%
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Table 4.9: Maximum time taken for One complete iteration using PDASP
architecture for different MIMO systems

Multipath
Components

2× 2 MIMO 3× 3 MIMO 4× 4 MIMO

No Multipath
9520 µsec 11449µsec 15633µsec

One
Multipath 16934µsec 26320µsec 38986µsec

Two
Multipaths 27143µsec 43380µsec 66898µsec

Table 4.10: Communication Burden specified for One Complete Iteration us-
ing NRF for Different MIMO Systems

No Multipath
9324 µsec 11101µsec 15121µsec

One
Multipath 16410µsec 25312µsec 37214µsec

Two
Multipaths 26123µsec 41212µsec 62354µsec



Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, the validation of PDASP architecture for various MIMO streams

deployed on low cost sensor nodes has been presented. The validation of PDASP

architecture has been evaluated on the basis of processing time, computational

complexity and communication delay. Processing time and computational com-

plexity of PDASP with low complexity MIMO channel estimation algorithm have

been compared with sequentially operated low complexity MIMO algorithm. It

has been realized that the PDASP architecture utilizes much lesser processing time

and computational complexity than the sequentially operated low complexity al-

gorithm. Moreover, by using the PDASP architecture, the memory utilization in

sense of variable storage has also been improved than the sequentially operated low

complexity MIMO estimation algorithm. Furthermore, It has been realized that

the communication burden for one complete iteration using PDASP architecture

is much higher than the individual processing time of any node in the network.

It has been observed that the communication burden may increase as increase in

number of MIMO streams or multipath components. For efficient communication,

there must be a trade off between the communication burden and the number of

MIMO spatial streams.

41
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5.2 Future Work

By using the PDASP architecture, it has been observed that the communication

burden for one complete iteration is much higher than the individual processing

time of any node in the distributed architecture. In future this increased commu-

nication delay can be reduced by considering the following plane.

5.2.1 Plan 1: WIFI Transceiver

In PDASP architecture, the information interchanges among the processing nodes

is possible by using the NRF24l01 transceiver. The maximum data rate provided

by the NRF24l01 is 2Mbps. Therefore, the communication burden provided by

the PDASP architecture is much higher than the processing time of the algorithm

when it runs on single unit. To makes the fast communication among the nodes,

there is scope to use the WIFI transceiver module that provide a maximum data

rate of 54Mbps.

5.2.2 Plan 2: The Network Simulator - ns-2

Ns is a discrete event simulator targeted at networking research. Ns provides

substantial support for simulation of TCP, routing, and multicast protocols over

wired and wireless (local and satellite) networks. NS2 provides the packet trans-

mitting rate, end-to-end delay, index number of packet, protocol types and so

on. It records the detailed data of packets flow passing through the intermediate

nodes. The PDASP architecture can be simulated on NS2 and compare the results

with this thesis results from which we can draw bigger picture.

5.2.3 Plan 3: Use of MIMO antennas

In time varying channel environment, due to high Doppler rate the channel shows

adverse behavior. For instance, at 50HZ of Doppler the channel is constant for
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20msec. It is necessary to estimate the time varying channel condition and there-

fore, the communication burden must be reduced as much as possible. By using

MIMO antennas, the communication may be reduced.
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